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HIGH-ORDER CURVILINEAR FINITE ELEMENT METHODS FOR
LAGRANGIAN HYDRODYNAMICS ∗

V. A. DOBREV, † , TZ. V. KOLEV ‡ , AND R. N. RIEBEN §

Abstract.
We derive a general finite element approach for solving the Euler equations of compressible

hydrodynamics in a moving Lagrangian frame. We discretize the kinematic variables of position
and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree
which is obtained via a corresponding high-order parametric mapping from a standard reference
element. This enables the use of curvilinear zone geometry, higher-order approximations for fields
within a zone and a pointwise definition of mass conservation which we refer to as strong mass
conservation. We discretize the internal energy using a piecewise discontinuous high-order basis
function expansion which is also of arbitrary polynomial degree. This facilitates multi-material
hydrodynamics by treating material properties, such as equations of state and constitutive models,
as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine-Hugoniot jump
conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor
artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information
available in each zone. Finally, we apply a generic high-order time discretization process to the semi-
discrete equations to develop the fully discrete conservation laws. Our method can be viewed as the
high-order generalization of the so called staggered-grid hydrodynamics (SGH) approach and we show
that under specific low order assumptions, we exactly recover the classical SGH method. Our method
is valid for both 2D and 3D meshes with quadrilateral/hexahedral and triangular/tetrahedral zones.
We present an extensive series of verification test problems designed to stress important aspects of
Lagrangian hydrodynamics and to demonstrate several practical advantages to using high-order finite
elements in this context, including: the ability to more accurately capture geometrical features of a
flow region using curvilinear zones, significant improvements in symmetry preservation for symmetric
flows, elimination of the need for ad-hoc hourglass filters, sharper resolution of a shock front for a
given mesh resolution including the ability to represent a shock within a single zone and a substantial
reduction in mesh imprinting for shock wave propagation not aligned with the computational mesh.

Key words. Hydrodynamics; Compressible flow; Hyperbolic partial differential equations; La-
grangian methods; Finite element methods; Variational methods; High-order methods; Curvilinear
meshes

AMS subject classifications. 65M60, 76N15, 76L05

1. Introduction and Motivation. Our goal is to solve the Euler equations of
compressible hydrodynamics for the purposes of modeling complex, multi-material,
high speed flow and shock wave propagation over general unstructured 2D and 3D
computational domains. Numerical methods for solving such equations can be clas-
sified according to two classical cases: the Eulerian and the Lagrangian descriptions.
In the Eulerian case, numerical methods are defined on a fixed, typically Cartesian,
computational mesh through which the fluid moves. In contrast, Lagrangian methods
are characterized by a computational mesh that moves with the fluid velocity. The
advantages, disadvantages and applications of each approach are well documented
(see for example [1]). In this paper, we are concerned exclusively with Lagrangian
methods.
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Historically, Lagrangian methods have been achieved using one of two major
approaches. The first, known as staggered grid hydrodynamics (SGH), employs a
spatial discretization where the thermodynamic variables density, pressure and in-
ternal energy are approximated as piecewise constant values defined on zone centers
and kinematic variables such as velocity and accelerations are defined on the mesh
nodes (vertices); cf. [2, 3, 4]. Artificial viscosity, as originally proposed by [5], is
used to generate entropy across shock boundaries while still satisfying the Rankine-
Hugoniot jump conditions at an appropriate distance away from the shock (typically
a few zones). The second major approach, known as cell-centered hydrodynamics
(CCH), treats all hydrodynamic variables as zone (or cell) averaged quantities and
uses approximate Riemann solvers (in the spirit of Godunov methods) to determine
velocities at mesh vertices; cf [6, 7, 8]. This process naturally introduces a sufficient
level of dissipation at shock boundaries. We note that work has been done which
attempts to bridge the conceptual gap between these approaches and identifies many
similarities between them [9, 10].

For each of these approaches, the node based kinematic variables are required
to be continuous in order to have a well defined field with which to move the mesh
at each discrete time step; whereas the thermodynamic variables are discontinuous.
This is usually referred to as a ”single fluid, multiple material” approximation of the
general hydrodynamics equations. The distinction of continuous vs. discontinuous
thermodynamic variables is trivial for the case of constant zone averaged values, but
becomes important when we consider the more general case of higher order bases for
thermodynamic fields. There is physical motivation for treating these variables in
a discontinuous manner since the equation of state of a material is a local property
and discontinuous at material interfaces (contact discontinuities). The preservation
of material interfaces is one of the attractive features of a Lagrangian method.

Typically, SGH and CCH methods employ finite difference or finite volume tech-
niques to compute spatial gradients which are required for calculating forces. For
example, in the case of SGH, the forces acting on a given mesh node due to the gra-
dient of the scalar pressure field are computed using the pressure values and mesh
coordinates of the zones which share that node. Since the mesh is an evolving quan-
tity throughout the duration of a Lagrangian computation, its quality changes from
time step to time step and therefore influences the solution accuracy via the strong
dependence on local mesh spacing and quality for finite difference / finite volume
gradient computations. This strong dependence on local mesh quality leads to the
so called ”mesh imprinting” phenomenon where a Lagrangian calculation can prema-
turely terminate due to mesh tangling or an overly restrictive Courant limited time
step. Furthermore, this mesh based error feeds back into the computation in a non-
linear fashion and can therefore be amplified over time leading to non-physical results
such as symmetry breaking and spurious grid vorticity [11]. In addition to mesh
imprinting, SGH Lagrangian calculations have long suffered from the so called ”hour-
glass mode” instabilities which are caused by the inability of a numerical method to
resolve the gradient of the highest frequency spatial mode of a given computational
grid (the so-called “checkerboard” pressure mode). If left unchecked, such modes can
grow indefinitely in a time dependent problem leading to spurious grid distortion.
To address this instability, it is often necessary to introduce artificial forces in the
momentum equation which are designed to resist (or filter out) the offending modes
[4].

The arbitrary Lagrangian-Eulerian (ALE) technique was developed largely to
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overcome many of these issues [12, 13, 14, 15]. In a typical ALE implementation,
the mesh is evolved in a Lagrangian manner for some number of time steps, until
the so called re-meshing phase at which point the computational mesh is adjusted
according to some prescribed quality metrics followed by the remap phase where the
solution variables are conservatively and monotonically remapped onto the new mesh.
The ALE technique is a very mature methodology and is the basis for many large
scale, massively parallel simulation codes; the details of ALE will not be considered
in this paper. At the core of every ALE method is the Lagrange step, where the
numerical solution is obtained by solving on a computational mesh which has been
moved with the fluid. It is important to emphasize that despite its many advantages
in maintaining mesh quality and general robustness, ALE will not solve the underlying
errors in symmetry, hourglass instabilities and energy conservation that are generated
by the Lagrange step.

There has been much work in developing improvements to both the SGH and CCH
approaches. The so called ”compatible hydro” approach of [16, 17, 18] was developed
to overcome several of the long standing deficiencies of Lagrangian methods, including
the inability of many methods to conserve total numerical energy algebraically. In
the compatible method, the notion of sub-zonal ”corner masses” and corresponding
”corner forces” are introduced which are used to compute work terms for updating the
internal energy in a manner which conserves total energy algebraically. Furthermore,
the corner masses are used to infer sub-zonal pressure changes which are then used
to compute internal zone forces designed to resist hourglass mode deformations, zone
”collapse” and in general, to improve the robustness of Lagrangian computations.
Taking a different approach to improving the quality of Lagrangian methods, several
researchers have advocated the use of improved artificial viscosities for SGH formula-
tions such as the edge and tensor artificial viscosity formulations of [19, 20, 21, 22].
Similar work has been done for the case of CCH Lagrangian methods by improving
the way in which nodal velocities are obtained as in [10]

Recent work has been made connecting the traditional SGH methods to finite
element methods (FEM). In [23, 24] the authors introduce the use of stabilized Q1/P0
elements for multi-scale Lagrangian hydrodynamics where they make use of many
techniques from finite element theory, such as parametric element mappings, mass
and stiffness matrices, and mass lumping to formulate their methods. Furthermore,
a connection between the compatible hydro method and traditional finite element
methods is described in [25].

We consider a generalized FEM treatment (cf. [26]) that includes the case of
higher order basis functions obtained via a high-order mapping from a reference ele-
ment. We treat the equations of momentum and energy conservation in a variational
manner and employ a Galerkin finite element discretization process to reduce the
continuum equations to a set of semi-discrete algebraic equations. We then apply a
generalized high-order time stepping procedure to the semi-discrete equations result-
ing in a method that is high-order accurate in both space and time. Such approaches
have been successfully used in other computational physics applications including elec-
tromagnetics [27, 28, 29], incompressible flow [30] and magnetohydrodynamics [31]. In
this paper we restrict ourselves to 2D/3D Cartesian geometry, but the finite element
element framework can be naturally extended to axisymmetric problems, as will be
discussed in a different paper.

Our method is built around the notion of general high-order polynomial basis
function representations for the various Lagrangian state variables. This leads to
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many novel features including: curvilinear zone geometries (also explored in [32, 27]),
the notion of strong mass conservation which is a point-wise generalization of zonal
mass conservation, high-order continuous velocities (e.g. biquadratic, bicubic, biquar-
tic . . . ), high-order discontinuous thermodynamic variables, the generalization of the
”corner force” concept to high-order cases which leads to total discrete energy conser-
vation by construction, a high-order treatment of the tensor artificial viscosity, novel
variants of the artificial viscosity coefficient to account for curvilinear zone geome-
try and the generalization of the sub-zonal pressure method of [18] by treating the
equations of state as functions which vary inside of a zone. Furthermore, we show
that our general method exactly reduces to classical SGH under specific low order
assumptions.

We consider an extensive set of test problems designed to exercise various aspects
of Lagrangian hydrodynamics including 1D shock / rarefaction / contact discontinuity
propagation, preservation of adiabats for smooth flow, shock wave propagation over
general / distorted meshes, symmetry preservation for radial and spherical flows on
general meshes, spurious vorticity / enstrophy generation for smooth nearly incom-
pressible flows and complex shock interactions on unstructured grids. For each case
we demonstrate the advantages that our generalized high-order approach can provide.

The remainder of this paper is organized as follows: In Section 2 we review
the continuum equations of Lagrangian hydrodynamics. In Section 3 we consider
a generic finite dimensional variational formulation of the Euler equations in a La-
grangian frame. In Section 4 we present a finite element numerical algorithm based
on the general semi-discrete Lagrangian discretization method which uses high or-
der finite element spaces defined on curvilinear zone geometries obtained through a
high order mapping from a reference element. In Section 5 we prove equivalence of
the resulting general finite element formulas to some classical SGH methods under
simplifying, low order approximations. In Section 6 we discuss the details of artifi-
cial viscosity for the general high-order methods and introduce several novel concepts
for treating the artificial viscosity coefficient in this context. In Section 7 we apply
a generic time discretization process to the semi-discrete equations and develop the
fully discrete conservations laws. Finally, in Section 8 we present an extensive series
of verification test problems solved using the newly develop method and demonstrate
its practical advantages over a wide scope of problem types.

2. Conservation Laws of Lagrangian Hydrodynamics. Consider a contin-
uous medium, Ω(t), e.g. a fluid or elastic body which is deforming in time. We think
of the medium as composed of a continuum number of particles, {x(t)}, which occupy
different points in space for different values of t. The initial configuration at time
t = t0 will be denoted by Ω̃ ≡ Ω(t0) and its particles by {x̃}. In the Lagrangian
description of motion, the particle position x is expressed as a function of the initial
position x̃ and time:

x = x(x̃, t) = Φ̃(x̃, t) , x̃ ∈ Ω̃ , t ≥ t0 . (2.1)

This description corresponds to an observer moving with the medium and is
characterized by the use of the material derivative

dα

dt
(x, t) =

d

dt
[α(x(x̃, t), t)] , or

dα

dt
=
∂α

∂t
+ v · ∇α . (2.2)

Here α = α(x, t) is any quantity (scalar, vector, etc.) associated with the fluid, while
v is the particle velocity, i.e. the rate of change of the particle position relative to an
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outside observer or Eulerian reference frame:

v(x, t) =
dx

dt
≡ ∂Φ̃(x̃, t)

∂t
. (2.3)

Note that in (2.2) and the rest of the paper we use the derivative and contraction
operators according to general tensor rules, so e.g. (v · ∇v)j =

∑
i vi(∂ivj).

The conservation laws of Lagrangian hydrodynamics are a direct consequence
of the following result, known as the Reynolds transport theorem, see e.g. [33, 34],
which describes the rate of change of integrated quantities (like mass, momentum and
energy):

d

dt

∫
U(t)

α =
∫

U(t)

dα

dt
+ α∇ · v . (2.4)

Here U(t) = Φ̃(Ũ , t) is an arbitrary control volume (a set of particles), which deforms
in time starting from an original configuration Ũ ⊂ Ω̃.

The Reynolds transport theorem can be derived using change of variables and the
identity

d|J̃ |
dt

= |J̃ |∇ · v , (2.5)

where J̃ = ∇x̃ x = ∇x̃Φ̃ is the Jacobian of the Lagrangian transformation (2.1) and
|J̃ | is its determinant.

Setting α = 1 in (2.4) gives the so-called geometric conservation law (GCL)

d|U(t)|
dt

=
∫

U(t)

∇ · v , (2.6)

where |U(t)| denotes the volume of U(t).

2.1. Mass conservation. Let ρ be the density (mass per volume) of the fluid.
A fundamental postulate of Lagrangian hydrodynamics is that the mass in any volume
U(t) does not change in time:

d

dt

∫
U(t)

ρ = 0 . (2.7)

Using the Reynolds transport theorem (2.4), this becomes∫
U(t)

dρ

dt
= −

∫
U(t)

ρ∇ · v , (2.8)

which assuming regularity of the integrands, implies the point-wise equality

1
ρ

dρ

dt
= −∇ · v . (2.9)

Equivalently, the mass conservation law can also be expressed as

d

dt
(ρ|J̃ |) = 0 , or ρ(x, t)|J̃(x̃, t)| = ρ(x̃, t0) , (2.10)
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where x = Φ̃(x̃, t) and arbitrary x̃ ∈ Ω̃ and t. When used directly for discretization,
we refer to the above identity as the strong mass conservation principle, to emphasize
that it is equivalent with exact mass conservation for any Lagrangian volume.

Note that the Reynolds transport theorem (2.4) and (2.9) imply

d

dt

∫
U(t)

ρα =
∫

U(t)

ρ
dα

dt
, (2.11)

which can also be derived directly.

2.2. Momentum Conservation. Let σ be the deformation stress tensor. In
the absence of external body forces, the conservation of momentum reads

d

dt

∫
U(t)

ρ v =
∫

∂U(t)

n · σ , (2.12)

where ∂U(t) denotes the boundary of the control volume U(t). Using (2.11) and the
divergence theorem we get ∫

U(t)

ρ
dv

dt
=
∫

U(t)

∇ · σ , (2.13)

which further implies the point-wise equality

ρ
dv

dt
= ∇ · σ . (2.14)

2.3. Energy Conservation. Let e denote the internal energy per unit mass.
Then, the total internal energy in U(t) is

IE(t) =
∫

U(t)

ρ e. (2.15)

Furthermore, we define the kinetic energy

KE(t) =
1
2

∫
U(t)

ρ |v|2 , (2.16)

and the total energy

E(t) = KE(t) + IE(t) . (2.17)

In the absence of a heat flux, the conservation of total energy can be expressed as

d

dt

∫
U(t)

ρ

(
e+

1
2
|v|2
)

=
∫

∂U(t)

n · σ · v . (2.18)

Simplifying, using (2.11), the point-wise momentum conservation (2.14), along with
the fact that ∇ · (σ · v) = (∇ · σ) · v + σ : ∇v, we get∫

U(t)

ρ
de

dt
=
∫

U(t)

σ : ∇v , (2.19)

and therefore, for regular integrands

ρ
de

dt
= σ : ∇v . (2.20)
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2.4. Equation of State. In gas dynamics, the stress tensor is isotropic and has
the form σ = −p I. Here p is the thermodynamic pressure, which can be expressed
as a function of the density and the internal energy through a constitutive relation
p = EOS(ρ, e). This function, known as the equation of state, is determined by
experiments, and though analytical forms are available in simple cases, in practice it
is typically given as tabulated data. In the (simplest) case of a polytropic ideal gas
with a constant adiabatic index γ > 1, the EOS has the form

p = (γ − 1)ρ e . (2.21)

2.4.1. The Euler Equations in Differential Form. Combining (2.14), (2.9),
(2.20) and (2.21) we can write down the system of Euler equations of gas dynamics
in a Lagrangian reference frame [35]:

Momentum Conservation: ρ
dv

dt
= ∇ · σ , (2.22)

Mass Conservation:
1
ρ

dρ

dt
= −∇ · v , (2.23)

Energy Conservation: ρ
de

dt
= σ : ∇v , (2.24)

Equation of Motion:
dx

dt
= v , (2.25)

Equation of State: σ = −EOS(ρ, e)I . (2.26)

We use a general stress tensor σ in the above formulation in order to accommodate
the inclusion of anisotropic tensor artificial viscosity stresses. Specifically, in Section
6 we will replace (2.26) with σ = −pI + σa, where σa will generally depend on all
other variables.

3. Semi-discrete Lagrangian Discretization. In this section we consider
generic finite dimensional variational formulation of the Euler equations in a La-
grangian frame. A semi-discrete method for (2.22)–(2.26) is concerned only with the
spatial approximation of the continuum equations and begins with a discretization of
the particle space. A specific finite element numerical algorithm based on this frame-
work is presented in Section 4. We keep the description general in order to allow for
alternative discrete space constructions.

Let d ∈ {2, 3} be the space dimension. The semi-discrete Lagrangian discretiza-
tion is determined by two finite dimensional spaces on the initial domain Ω̃:

• a kinematic space V ⊂ [H1(Ω̃)]d, with a basis {wi}NV
i=1,

• a thermodynamic space E ⊂ L2(Ω̃), with a basis {φi}NE
j=1.

We discretize the position {x(t)} using the expansion

x(x̃, t) =
∑

i

xi(t)wi(x̃) = x(t)Tw(x̃) , (3.1)

where x(t) is an unknown time-dependent vector of size NV and w is a column vector
of all the basis functions {wi}NV

i=1. The vector x(t) represents the motion of the fluid
according to

Ω(t) = {x(x̃, t) : x̃ ∈ Ω̃)} . (3.2)

Note that we can define Lagrangian (moving) extensions of the kinematic and thermo-
dynamic basis functions on Ω(t) through the formulas wi(x, t) = wi(x̃) and φj(x, t) =
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φj(x̃), where x is the position of particle x̃ at time t. Due to (2.2), these moving bases
are constant along particle trajectories and therefore have zero material derivatives

dwi

dt
= 0 and

dφj

dt
= 0 . (3.3)

The corresponding spaces will be denoted by V(t) and E(t) respectivelly.
A mild restriction on the space V, expressing the fact that we can represent exactly

the initial geometry, is the requirement that there is an initial coefficient vector x(t0),
such that

x(x̃, t0) = x(t0)Tw(x̃) = x̃ ∀x̃ ∈ Ω̃ .

This vector provides also the initial conditions for the unknown x(t).
The discrete velocity field corresponding to the motion (3.1) is given by

v(x̃, t) =
∑

i

dxi

dt
(t)wi(x̃) = v(t)Tw(x̃) , i.e. v =

dx
dt

as in (2.3). Note that we can also think of the velocity as a function on Ω(t) with the
expansion v(x, t) =

∑
i

dxi

dt (t)wi(x, t) using the same coordinates, but in the moving
kinematic basis. We can also introduce the Jacobian of the discrete motion

J̃(x̃, t) = ∇x̃ x =
∑

i

xi(t)∇wi(x̃) .

Since both v and J̃ are defined as in the continuous case (by differentiating (3.1)), we
still have (2.5) as well as the GCL (2.6) on semi-discrete level.

Remark 1. Not all discretization methods preserve the GCL on semi-discrete
level. For example, many schemes such as [2, 3, 17, 18] approximate the velocity
divergence in the center of a zone through the time rate of change of volume

1
|Ω(t)|

d|Ω(t)|
dt

= ∇ · v . (3.4)

Though (3.4) is equivalent to (2.6) on quadrilateral meshes this is no longer the case
on general 3D grids, see Section 5.1.

Given initial density field ρ0(x̃) = ρ(x̃, t0), we use the strong mass conservation
principle (2.10) to define the density for all time:

ρ(x̃, t) = ρ0(x̃)/|J̃(x̃, t)| (3.5)

which as stated previously implies that the mass in every Lagrangian volume is pre-
served exactly.

We formulate the discrete momentum conservation equation by applying a varia-
tional formulation to the continuous equation (2.22). Using a Galerkin approach (at
a given time t) we multiply (2.22) by a moving basis test function wj ∈ V(t) and
integrate over Ω(t): ∫

Ω(t)

ρ
dv

dt
· wj =

∫
Ω(t)

(∇ · σ) · wj . (3.6)
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Performing integration by parts on the right hand side, we obtain∫
Ω(t)

ρ
dv

dt
· wj = −

∫
Ω(t)

σ : ∇wj +
∫

∂Ω(t)

n · σ · wj , (3.7)

where n is the outward pointing unit normal vector of the surface ∂Ω(t). Assuming
the boundary integral term vanishes (which is the case e.g. for boundary conditions
v · n = 0 and σ = −pI) and expanding the velocity in the moving basis gives us∑

i

dvi

dt

∫
Ω(t)

ρwi · wj = −
∫

Ω(t)

σ : ∇wj . (3.8)

In other words,

MV
dv
dt

= −
∫

Ω(t)

σ : ∇w. (3.9)

where MV is the kinematic mass matrix which is defined by the integral

MV ≡
∫

Ω(t)

ρwwT . (3.10)

An important feature of our approach is that this mass matrix is independent of time
due to (2.11) and (3.3):

dMV

dt
=

d

dt

∫
Ω(t)

ρwwT =
∫

Ω(t)

ρ
d

dt
(wwT) = 0 . (3.11)

The thermodynamic discretization starts with the expansion of the internal energy
in the basis {φj}:

e(x̃, t) =
∑

j

ej(t)φj(x̃) = e(t)Tφ(x̃) ,

where e(t) is an unknown time-dependent vector of size NE and φ(x̃) is a column
vector of all the basis functions {φj}NE

j=1. The internal energy can also be expressed
in the moving thermodynamic basis: e(x, t) =

∑
j ej(t)φj(x, t).

Consider a weak formulation of the energy conservation equation (2.24) obtained
by multiplying it by φi and integrating over the domain Ω(t):∫

Ω(t)

(
ρ
de

dt

)
φi =

∫
Ω(t)

(σ : ∇v)φi. (3.12)

Expressing the energy in the moving thermodynamic basis gives:∑
j

dej

dt

∫
Ω(t)

ρφjφi =
∫

Ω(t)

(σ : ∇v)φi.

In other words,

ME
de
dt

=
∫

Ω(t)

(σ : ∇v) φ. (3.13)
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where ME is the thermodynamic mass matrix which is defined by the integral

ME ≡
∫

Ω(t)

ρφφT . (3.14)

Analogous to the kinematic case, we can use the fact that the thermodynamic basis
functions have zero material derivatives to conclude that ME is independent of time.

We now introduce an NV×NE rectangular matrix F that connects the kinematic
and thermodynamic spaces:

Fij =
∫

Ω(t)

(σ : ∇wi)φj . (3.15)

The stress tensor σ is defined using the equation of state and the above density and
internal energy fields:

σ(x, t) = −EOS(ρ(x, t), e(x, t))I .

By simply changing the above evaluation, our approach can handle general stresses,
including strength models and artificial viscosity terms, see Section 6.

Given these definitions, we can now summarize the general semi-discrete La-
grangian conservation laws in the following simple form:

Momentum Conservation: MV
dv
dt

= −F · 1, (3.16)

Energy Conservation: ME
de
dt

= FT · v, (3.17)

Equation of Motion:
dx
dt

= v. (3.18)

The vector 1 above is the representation of the constant one in the thermodynamic
basis {φi} (we assume that 1 ∈ E).

Theorem 3.1. The general semi-discrete Lagrangian method (3.16)– (3.18) has
the following properties:

• exact geometric conservation law (2.6).
• exact mass conservation.
• exact total energy conservation.

This is a general result valid for any choice of the kinematic and thermodynamic
spaces provided that they contain the vector field x̃ and the constant 1, respectively.

Proof. The exact GCL and mass conservation were already discussed in the
beginning of this section.

Regarding the total energy conservation, note that the formulas for the total
internal and kinetic energies (2.15) and (2.16) can be expressed in the semi-discrete
settings as:

IE(t) = 1 ·ME · e , KE(t) =
1
2

v ·MV · v .

Therefore the rate of change of the total discrete energy is

dE

dt
=

d

dt

(
1
2

v ·MV · v + 1 ·ME · e
)
.
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Using the fact that both the kinematic and thermodynamic mass matrices are sym-
metric and independent of time, as well as equations (3.16) and (3.17), we get

dE

dt
= v ·MV ·

dv
dt

+ 1 ·ME ·
de
dt

= −v · F · 1 + 1 · FT · v = 0.

Remark 2. Let c = cTw ∈ V be a vector which is constant in time and consider
the change of the total momentum in the direction of c. By (2.11) and (3.16), we
have

d

dt

(
c ·
∫

Ω(t)

ρ v

)
= c ·MV

dv
dt

= −c · F · 1 =
∫

Ω(t)

σ : ∇c = 0 .

Thus, the total momentum (in any direction) is also being conserved on a semi-discrete
level, provided that constant fields are representable in V.

4. Finite Element Lagrangian Discretization. In this section we describe
a finite element numerical algorithm based on the general semi-discrete Lagrangian
discretization method from Section 3. The main feature of our approach is the use of
high-order kinematic and thermodynamic approximation spaces defined on curvilinear
meshes.

4.1. Particle Motion and Geometry Reconstruction. We start with some
geometric considerations related to the choice of the finite element kinematic dis-
cretization space V and the definition of the deformed domain Ω(t).

A natural way to discretize the motion of the whole medium is to describe it
through the motion of only a finite number of particles. In practice, we decompose the
spatial domain Ω(t) at the initial time t = t0 into a set of non-overlapping, discrete
volumes {Ωz(t0)} called zones (or elements) and associate particles with them, see
Figure 4.1. The union of these discrete zones forms the initial computational domain
Ω̃ which may, in general, be an approximation of the exact initial domain.

! 
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0
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"
z
(t)

! 

"
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0
)
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)
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(t)
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"
z
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0
)
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"
z
(t)

Fig. 4.1. A zone Ωz(t) reconstructed from the evolution of only a few of its points (parti-
cles) indicated by black circles. Shown are several different choices corresponding to ( left to right)
Crouzeix-Raviart, Q1, Q2 and Q3 finite elements. Note that the reconstruction with Crouzeix-
Raviart elements is not unique and that the zone boundaries are curved in the Q2 and Q3 cases.

After evolving the particles in time, the zones Ωz(t) are reconstructed based on
the locations of the particles associated with them (vertices, edge midpoints, etc.),
thus defining the moved mesh Ω(t). Note that this reconstruction process introduces
a geometric error (which should vanish under refinement), since the computational
mesh will be only an approximation to the true geometry of the exact domain, even
if the particle trajectories are exact.
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The presence of this built-in geometric error motivates the use of high-order ele-
ments, as the Q2 and Q3 elements shown in Figure 4.1, since such elements have more
degrees of freedom on the zone boundaries, allowing them to better represent smooth
deformations. High-order elements are also advantageous in representing initial cur-
vature (e.g. at boundaries and interfaces) as well as curvature naturally developing
in the flow, as illustrated with the exact solutions of two classical test problems in
Figure 4.2.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 4.2. An initial Cartesian mesh deformed according to the exact solutions of the Sedov
blast wave ( left) and the Taylor-Green vortex ( right). See Section 8.

In Section 3 we described a general functional reconstruction approach (3.2) based
on abstract particle locations represented by the expansion coefficients x(t). In the
rest of this section we detail a natural way to define a local reconstruction through the
finite element method (FEM). In the settings of Section 3 this amounts to defining
the basis for the space V by local construction on each zone.

4.2. Curvilinear Zone Geometry. The finite element space construction be-
gins with definitions on the reference element Ω̂z, e.g. the unit square in 2D or the
unit cube in 3D. Throughout the remainder of this paper, all quantities which are
defined with respect to the reference element coordinate system will be accented with
a ”hat” symbol.

We consider a basis on the reference element {η̂(x̂)}Nv
i=1 which is nodal, i.e. there

is a set of points called nodes {p̂i}Nv
i=1 such that η̂i(p̂j) = δij where δij is the Kroneker

delta symbol. The points {p̂i} represent the fixed particle locations on Ω̂z and η̂i is
the (high-order) nodal basis function associated with particle i (see Figure 4.3). Given
the particle locations {xz,i(t)} for a zone Ωz(t), we reconstruct the zone by defining
the curvilinear zone mapping

Φz(x̂, t) =
Nv∑
i=1

xz,i(t) η̂i(x̂) , (4.1)

which is defined so that it maps the reference nodes {p̂i} to the particle locations of
the zone (see Figure 4.1):

Φz(p̂i, t) = xz,i(t) , i = 1, . . . , Nv .

Based on this reconstruction, the volume occupied by Ωz(t) is image of the reference
zone Ω̂z under the map Φz:

Ωz(t) = {x = Φz(x̂, t) : x̂ ∈ Ω̂z} .
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For the case of a traditional two-dimensional Q1 zone geometry consisting of four
vertices connected by straight lines, the mapping Φz is bilinear. We propose to use
high-order mappings such as Q2 (biquadratic) which produce zones with curvilinear
geometry as shown in Figure 4.4. In this case, the reference zone is the unit square
Ω̂z = [0, 1]× [0, 1], the set of nodes is

p̂1 = (0, 0) p̂2 = (1, 0) p̂3 = (1, 1)
p̂4 = (0, 1) p̂5 = (0.5, 0) p̂6 = (1, 0.5)
p̂7 = (0.5, 1) p̂8 = (0, 0.5) p̂9 = (0.5, 0.5) ,

and the Q2 nodal basis is given by

η̂1(x̂, ŷ) = (1− x̂)(1− 2x̂)(1− ŷ)(1− 2ŷ) η̂2(x̂, ŷ) = x̂(2x̂− 1)(1− ŷ)(1− 2ŷ)
η̂3(x̂, ŷ) = x̂(2x̂− 1)ŷ(2ŷ − 1) η̂4(x̂, ŷ) = (1− x̂)(1− 2x̂)ŷ(2ŷ − 1)
η̂5(x̂, ŷ) = 4x̂(1− x̂)(1− ŷ)(1− 2ŷ) η̂6(x̂, ŷ) = x̂(2x̂− 1)4ŷ(1− ŷ)
η̂7(x̂, ŷ) = 4x̂(1− x̂)ŷ(2ŷ − 1) η̂8(x̂, ŷ) = (1− x̂)(1− 2x̂)4ŷ(1− ŷ)
η̂9(x̂, ŷ) = 4x̂(1− x̂)4ŷ(1− ŷ) .

Fig. 4.3. Examples of 2D kinematic space basis functions on the reference zone: a standard Q1

bilinear function ( left), a Q2 biquadratic function ( center) and a Q4 biquartic function, ( right).
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Fig. 4.4. Example of a Q2 biquadratic mapping from a reference zone ( left) to a Lagrangian
zone ( right) defined by the locations of the 9 Lagrangian particles (black dots).

The global FEM space V(t) (see Section 3) is defined by identifying the particles
that share the same physical location, i.e. particles at common zone boundaries. With
any global particle p we associate d vector basis functions wi of the form

(ηp, 0, 0) (0, ηp, 0) (0, 0, ηp) in 3D .
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The scalar function ηp is non-zero only in zones Ωz that contain the particle p. Re-
stricted to Ωz it is defined as

ηp(x, t)|Ωz
= η̂j(x̂) , with x = Φz(x̂, t) , (4.2)

where j is the local particle index for p in the zone Ωz. In this (nodal) FEM setting,
the global unknown vector x(t) consists of all components of all particles. Here, we
defined V(t) directly using the particle trajectories whereas in Section 3 we defined it
through V = V(t0). Both approaches are identical. Indeed, the bases agree at t = t0
(by definition) and (4.2) implies that the material derivatives of wi are zero which
coincides with the definition used in Section 3. In particular,

Φz(x̂, t) = Φ̃(Φz(x̂, t0), t) . (4.3)

4.3. Strong Mass Conservation. The element Jacobian matrix is defined as

Jz = ∇x̂Φz , (4.4)

and generally varies in the zone. The determinant of the Jacobian, |Jz| ≡ detJz,
gives a measure of volume at a specific point, since the total volume of a Lagrangian
zone can be computed as

|Ωz(t)| =
∫

bΩz

detJz(t) . (4.5)

By differentiating (4.3), we get the following relation between the element Jaco-
bian and the Jacobian of the Lagrangian transformation from Section 3:

Jz(t) = Jz(t0) J̃(t) . (4.6)

A fundamental postulate of the Lagrangian description of hydrodynamics is the
fact that the total mass contained within a discrete volume element Ωz does not
change in time. In other words, if we introduce the “zonal mass”

mz ≡
∫

Ωz(t)

ρ then
dmz

dt
= 0 .

In both SGH and CCH Lagrangian formulations, the zonal mass is a fundamental
quantity and is used to define the evolution of the density as the ratio of the zonal mass
to the current volume of the zone. In practice, this is known as ”mass conservation
by fiat” and it means that the point wise form of the mass conservation equation in
(2.23) is not explicitly discretized.

In contrast, we use our general framework to eliminate the density through the
strong mass conservation principle (3.5), which in this case takes the form

ρ(t)|detJz(t)| = ρ(t0)|detJz(t0)| . (4.7)

Note that the density defined by this equation is not a finite element (or polynomial)
function.

The principle of strong mass conservation can be viewed as a generalization of
zonal mass conservation as well as the ”sub-zonal mass” concept introduced in [17].
It allows us to define density at any point in time and space as a function which is a
critical component of our approach. An alternative approach is to define high-order
mass moments, e.g. by projecting the above density in a discontinuous finite element
space as in [36].
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4.4. Finite Element Kinematics. The momentum conservation equation is
discretized following the general framework of Section 3 based on the finite element
kinematic space from Section 4.2.

The locality of the finite element basis implies that the global kinematic mass
matrix is sparse and can be computed through standard finite element assembly pro-
cedure from zonal mass matrices:

MV = Assemble(MV,z) .

The process of global assembly is analogous to the concept of “nodal accumulation”
that is used in a traditional SGH method where a quantity at a node is defined to be
the sum of contributions from all of the zones which share this node.

Note that MV is symmetric positive definite and block-diagonal (with identical
blocks). It is also well-conditioned, which implies that simple conjugate gradient iter-
ation can be used to solve the momentum equation iteratively with optimal efficiency.

Since the kinematic mass matrix is independent of time, see (3.11), we compute
and store MV only in the beginning of the simulation. In practice, the local mass
matrices MV,z are computed by transforming the integrals to the reference element
and applying a quadrature rule.

4.5. Finite Element Thermodynamics. Since the kinematic degrees of free-
dom overlap between the zones, it is natural to understand the momentum conserva-
tion equation in a global (continuous) sense. In contrast, the equation of state is local,
underlining the local character of the density, pressure and internal energy. There-
fore, we argue that the thermodynamic space E should be discontinuous to allow for
restriction of the internal energy conservation equation to the computational zones.

Specifically, to define E(t) we introduce a thermodynamic basis {φ̂i} on the ref-
erence element and define the global moving basis {φj} through the mapping Φz.
This is done zone-by-zone keeping the zonal degrees of freedom independent, which
produces a basis that is discontinuous across zone boundaries. For example, if j is a
global degree of freedom corresponding to a local index i in a zone Ωz, then φj is zero
outside of Ωz and

φj(x, t)|Ωz
= φ̂i(x̂) , with x = Φz(x̂, t) . (4.8)

Following the general framework of Section 3 we use E(t) to discretize the energy
conservation equation, locally on each zone. As with the kinematic mass matrix, we
can consider the thermodynamic mass matrix as being assembled from the local mass
matrices on each individual zone

ME = Assemble(ME,z) .

However, due to the discontinuous nature of the thermodynamic basis, there is no
sharing of degrees of freedom across zone boundaries and so the ”assembled” ther-
modynamic mass matrix is block diagonal with each block being purely local matrix
on each zone. Since these matrices are independent of time, we compute and store
the inverses M−1

E,z at the beginning of the simulation. In practice, the local mass
matrices ME,z are computed by transforming the integrals to the reference element
and applying a quadrature rule.

Note that continuous finite element thermodynamic spaces can also be handled in
our framework, though this will introduce interaction between the energies in different
zones, and lead to a global matrix ME.
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4.6. The Generalized Force Matrix. As with the previously defined mass
matrices, the matrix F from (3.15), which we call the generalized force matrix can be
assembled from zonal contributions:

F = Assemble(Fz)

where

(Fz)ij ≡
∫

Ωz(t)

(σ : ∇wi)φj .

This local rectangular matrix is the high-order generalization of the ”corner force”
concept described in [17]. It represents the hydrodynamic force contributions from a
given zone to a given shared kinematic degree of freedom as well as the work done by
the velocity gradient in the energy equation.

Evaluating Fz is a locally FLOP-intensive calculation that forms the computa-
tional kernel of our finite element discretization method. Specifically, we transform
each zone back to the reference element where we apply a quadrature rule with points
{q̂k} and weights {αk}:

(Fz)ij ≈
∑

k

αkσ̂(q̂k) : J−1
z (q̂k)∇̂ŵi(q̂k) φ̂j(q̂k)|detJz(q̂k)| . (4.9)

Note that in general, the total stress σ is evaluated at each quadrature point. In the
absence of shear and artificial stresses (see Section 6), the total stress is given by
σ = −pI and the pressure is therefore evaluated at each quadrature point through
the equation of state in the evaluation of (4.9). Furthermore, the density (in an
EOS call for example) is evaluated at each quadrature point using the strong mass
conservation principle of (4.7). The notion of sampling the density and pressure as
functions evaluated at zone quadrature points is a key component of our high-order
discretization approach and is essential for robust behavior.

Remark 3. The use of quadrature rules to approximate the integrals in the eval-
uation of the zonal mass and corner force matrices is not always exact (depending
on the functional form of the integrand and the order of the quadrature rule). This
step therefore introduces an additional approximation to the solution of the continuum
equations. In practice, we use tensor product Gauss-Legendre quadrature on quadri-
lateral and hexahedral meshes.

5. Relation to Classical Discretization Schemes. In this section we derive
some classical discretization schemes from our general framework under additional
discretization assumptions.

5.1. The Staggered Grid Method of Wilkins. In this section we show that
using a piecewise bilinear kinematic approximation and a single point quadrature rule
with mass lumping, we can exactly recover the traditional staggered-grid method of
Wilkins [2] as well as a variant of the method described in [18] on general quadrilateral
grids.

The reference zone Ω̂z is the unit square with vertices

X̂1 = (0, 0) , X̂2 = (1, 0) , X̂3 = (1, 1) , X̂4 = (0, 1) ,

and corresponding basis functions

η̂1(x̂, ŷ) = (1− x̂)(1− ŷ) , η̂2(x̂, ŷ) = (1− x̂)ŷ , η̂3(x̂, ŷ) = x̂ŷ , η̂4(x̂, ŷ) = x̂(1− ŷ) .
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The Jacobian matrix for a bilinear mapping to a fixed zone Ωz with vertices {Xi =
(xi, yi)}4i=1 has the form

Jz(x̂, ŷ) =
(
J1,1 J1,2

J2,1 J2,2

)
=
(
X2 −X1 + (X3 −X2 −X4 +X1)ŷ
X4 −X1 + (X3 −X2 −X4 +X1)x̂

)
, (5.1)

and its inverse can be expressed in terms of its adjugate:

J−1
z =

1
detJz

J⊥Z where J⊥z =
(

J2,2 −J1,2

−J2,1 J1,1

)
.

The zonal kinematic mass matrix is

MV,z =
(
Mxx

V,z 0
0 Myy

V,z

)
, where (Mxx

V,z)ij = (Myy
V,z)ij =

∫
bΩz

ρη̂iη̂j |detJz| .

Note that the determinant of the Jacobian matrix (5.1) is a linear function on the
reference element. Therefore (4.5) implies that the application of a simple one point
quadrature rule to the mass matrix integral results in

Mxx
V,z ≈

ρz

16
|Ωz|


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 ,

where ρz denotes the value of the density at the zone center.
If we now apply “mass lumping” to Mxx

V,z, the global kinematic mass matrix MV

will be diagonal with entries corresponding to the so-called “nodal masses”

mn =
∑

Ωz3n

1
4
ρz|Ωz| .

In other words, we can approximate the mass associated with node n by simply
adding a quarter of the zone averaged mass of each zone which shares the node. This
is precisely the definition of the nodal mass that is used in the method of [2].

To compute the right hand side of (3.9), we assume σ = −p I, and define the
corner force vector fz at a vertex j (a rearrangement of our 8× 1 matrix Fz)

(fz)j = (fx
z , f

y
z )T

j =
∫

Ωz

p∇ηj =
∫

bΩz

p (J−1
z ∇η̂j) |detJz| . (5.2)

Applying the same one point quadrature rule to the above integral and inserting the
gradients of the bilinear basis functions

∇η̂1 = (ŷ − 1, x̂− 1) ∇η̂2 = (ŷ − 1,−x̂) ∇η̂3 = (ŷ, x̂) ∇η̂4 = (−ŷ, 1− x̂) ,

as well as the expressions for the term J⊥z , we arrive at the values

fx
z =

pz

2
(y2−y4, y3−y1, y4−y2, y1−y3) , fy

z =
pz

2
(x4−x2, x1−x3, x2−x4, x3−x1).

Here pz denotes the value of the pressure field p evaluated at the center of the zone.
These ”corner forces” contribute to the total pressure gradient force acting on node
n by

fx,n =
∑

Ωz3n

f x
z , fy,n =

∑
Ωz3n

f y
z ,
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which is precisely the formula for the so called “HEMP” pressure gradient operator
of [2]. We point out that this is also algebraically identical to the compatible hydro
method for calculating the pressure gradient as shown in [17] (see Figure 5.1). Indeed,
in the notation of Figure 5.1, we have

(~n1 − ~n2)p1 + (~n2 − ~n3)p2 + (~n3 − ~n4)p3 + (~n4 − ~n1)p4 =
(p1− p4)~n1 + (p2− p1)~n2 + (p3− p2)~n3 + (p4− p2)~n4 .

Fig. 5.1. Schematic depiction of control volume differencing schemes used for computing the
node centered gradient of a cell centered pressure. On the left is the so called HEMP approach
of Wilkins, on the right is the compatible finite difference approach of Caramana et. al. Both
approaches are algebraically identical for an arbitrary quadrilateral grid and can be derived from a
general FEM approach.

We remark that for constant pressure, the integrand of (5.2) is a bilinear function
and therefore a simple one point quadrature is enough for the exact computation of
the corner forces. This is not the case in 3D, where the integrand is a triquadratic
function that requires an 8-point Gaussian rule for exact integration.

5.2. The Compatible Hydro Method of Caramana et. al. In [16, 17, 18],
the authors introduce the notion of sub-zonal Lagrangian ”corner masses” and corre-
sponding ”corner forces” which serve two purposes: they are used to compute work
terms for updating the internal energy in a manner which conserves total energy al-
gebraically and the corner masses are used to infer sub-zonal pressure changes which
are then used to compute internal zone forces designed to resist hourglass mode de-
formations and Lagrangian mesh instabilities.

Consider the specific approximation choices used in Section 5.1 along with the
additional choice of a piecewise constant internal energy basis (i.e. a single thermody-
namic degree of freedom per zone). For each zone, our general high-order semi-discrete
energy conservation law reduces to the form

ME
de
dt

=
∫

Ωz(t)

(σ : ∇v) φ 7→ mz
dez

dt
=
∫

Ωz(t)

p∇ · v

where mz is the zonal mass and ez is the zone averaged value of the internal energy.
Our method can be viewed as a high-order generalization of the energy conserving
compatible formulation of [17] by noting that

fz =
∫

Ωz(t)

p∇ ·w,
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which is a collection of corner forces, c.f Section 5.1. The total change in energy is
therefore given by the inner product

fz · vz =
4∑

j=1

fj · vj

For the specific approximation choices of Section 5.1, fz are the corner forces for each
vertex of the zone.

In our evaluation of the generalized force matrix at each quadrature point in (4.9),
we are treating the density and pressure (via the EOS) as functions that vary within
the zone which can be viewed as a high order generalization of the ”corner mass” and
sub-zonal pressure concepts. Note that in [18] the corner masses are defined in terms
of four Lagrangian sub-volumes associated with the four vertices of a quadrilateral
zone and that the sub-zonal pressures are inferred by extrapolation of the cell averaged
pressure using the changes in these sub-volumes. In contrast, our approach evaluates
the pressure directly via the EOS at each quadrature point using the density from
strong mass conservation via (4.7).

6. Artificial Viscosity. To facilitate the case of shock wave propagation, we
now introduce a general tensor artificial viscosity to our semi-discrete equations. The
method of artificial viscosity, as originally introduced by Von Neumann and Richtmyer
[5], augments the discrete Euler equations with a diffusion term which is scaled by a
special mesh dependent, non-linear coefficient. Improvements to this basic technique
include the use of a Van Leer type “monotonic limiter” [37] and an additional linear
term due to Landshoff [38] which act to keep the artificial diffusion length of the shock
front to a minimum while preventing spurious Gibbs like oscillations in the vicinity of
the shock. We introduce a tensor artificial viscosity (c.f. [22]) by adding an artificial
stress tensor σa to the total stress tensor σ:

σ(x) = −p(x)I + σa(x).

We emphasize at this point that the artificial stress (as well as the total stress) is in
general a function of the spatial coordinates and therefore varies inside a zone.

We denote the symmetrized velocity gradient as

ε(v) ≡ 1
2
(∇v + v∇) (6.1)

which can be spectrally decomposed as

ε(v) =
∑

k

λksk ⊗ sk, si · sj = δij , λ1 ≤ · · · ≤ λd (6.2)

where λk and sk are the eigenvalues and eigenvectors respectively, sorted from smallest
to largest eigenvalue. Note that according to the definition of directional measure of
compression (6.4), s1 is the direction of ”maximal compression” (see (6.5)).

We consider a set of artificial viscosity types as summarized in Table 6.1. In gen-
eral, the artificial stress tensor is defined in terms of a directional viscosity coefficient
µs (see Section 6.1) and a velocity gradient tensor. For Type 1 and Type 2 from
Table 6.1, the directional vector s is defined to be s1. Each form of the artificial stress
satisfies the inequality

σa(x) : ∇v(x) ≥ 0, ∀x,
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which is an essential property for ensuring a strictly dissipative artificial viscosity,
ensuring positive entropy production. Note that all σa from Table 6.1 are symmetric
except Type 1, µs∇v, for the case of ∇× v 6= 0.

Artificial Stress Type Definition Symmetric

Type 1 σa = µs1∇v No
Type 2 σa = µs1 ε(v) Yes
Type 3 σa = µsk

λksk ⊗ sk Yes
Type 4 σa =

∑
k µsk

λksk ⊗ sk Yes
Table 6.1

Summary of artificial stress types.

6.1. Directional Viscosity Coefficient. Following [22], we consider a general
viscosity coefficient of the form

µs(x) ≡ ρ
{
q2`

2
s|∆sv|+ q1ψ0ψ1`scs

}
(6.3)

where q1 and q2 are linear and quadratic scaling coefficients respectively, cs is the
speed of sound evaluated at point x, and `s = `s(x) is a ”directional length scale”
defined in the direction of the vector s (see Section 6.2) evaluated at point x.

The directional measure of compression (or velocity jump term) ∆sv is defined as

∆sv =
s · ∇v · s
s · s

=
s · ε(v) · s
s · s

=
d(v · s)

ds
. (6.4)

In other words, the measure of compression is defined as a directional derivative of
the velocity in the direction given by the vector s. The following identity holds:

min
|s|=1

s · ε(v) · s
s · s

=
s1 · ε(v) · s1
s1 · s1

= λ1 (6.5)

which means that the direction s1 minimizes ∆sv over all unit dirctions s and the
measure of compression in direction s1 is given by λ1.

Finally, we define a ”compression switch” which causes the artificial viscosity to
vanish at points in expansion

ψ1 =

{
1, ∆sv < 0
0, ∆sv ≥ 0

as well as a ”vorticity measure” which causes the artificial to vanish for purely vortical
flows

ψ0 =
|∇ · v|
‖∇v‖

.

6.2. Directional Length Scale. Artificial viscosities require the definition of
a grid (mesh) dependent length scale. In many SGH formulations, this length scale is
a simple piecewise constant quantity which is computed as the square (cube) root of
the zone area (volume). More sophisticated treatments incorporate knowledge of the
shock velocity to determine the length scale or define the length scale as more than
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just a single constant value in the zone (e.g. [20]). Choices made in defining this scale
can have serious consequences with regard to the ”mesh imprinting” phenomenon that
is the bane of many Lagrangian methods.

We define the length scale as a function (i.e. a length scale field) defined at a
spatial coordinate x in terms of a direction vector s, relative to an initial length scale
field `0(x̃) defined on the initial domain Ω̃. Functionally this can be written through
the Jacobian J̃ of the Lagrangian transformation Φ̃ : Ω̃ → Ω(t) as either

`s(x) = `0
|s|

|J̃−1s|
, (6.6)

or

`s(x) = `0
|J̃T s|
|s|

. (6.7)

The differences between the definitions of (6.6) and (6.7) are illustrated in Figure 6.1.
Our default choice is to use first definition (6.6). In practice, the Jacobian matrix J̃
is computed zone-by-zone via the zone Jacobians Jz using (4.6):

J̃(t) = [Jz(t0)]
−1 Jz(t) .

Note that the use of the Jacobian of the mapping from the initial element in (6.6) and
(6.7) is essential. If, for example, we used the mapping from the reference element,
or in other words if we used Jz instead of J̃ , the symmetry preservation properties of
the solution degrade on general grids as illustrated in Figure 6.2.

~x ~s
`0
|s|
| eJ−1s|
←−−−−−−

~x(t0 )
`0
| eJT s|
|s|

−−−−−→
~x ~s

Fig. 6.1. Examples of the initial length scale field transformation from an initial zone ( center)
to a Lagrangian zone via (6.6) ( left) and (6.7) ( right).

The initial length scale field `0(x̃) can be defined on the initial mesh in different
ways such as

• A global constant, e.g. in 2D `0 = (tot. area/num. of zones)1/2 (for initial
meshes which are close to uniform).

• A smoothed version of a local mesh size function (for initial meshes with local
refinement).

• A smoothed or constant function based on a given mesh direction size (for
1D problems).

For high-order methods, we divide the length scale field `0 by the polynomial degree
of the kinematics space.

6.3. Non-scalar tensor viscosity coefficient. In this section we consider in
detail some properties of the different types of artificial stresses we defined.

Let s be a unit column vector. Then the action of the rank-1 matrix ssT is simply
the projection onto the direction specified by s, since (ssT)v = (v · s)s.
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Fig. 6.2. Numerical results for the Noh implosion problem on a 24×24 distorted grid, cf. Section
8.4, using a directional length scale defined through a mapping to initial element Ωz(t0) ← Ωz(t)

(left), versus a mapping to the reference element bΩ← Ωz(t) (right).

Now, let {sk} be an orthonormal basis, i.e. sTi sj = δij , and consider the matrix

A =
∑

k

λksksTk .

It is straightforward to check that A is symmetric, and has eigenvalues λk with
corresponding eigenvectors sk. In other words, A = diag(λ) in the coordinate system
given by {sk}.

Note that I =
∑

k sksTk , and if B =
∑

k µksksTk then

AB =
∑

k

λkµksksTk and A : B = tr(ATB) =
∑

k

λkµk .

Let us denote by σk the artificial stress of type k. Identifying the eigenvectors sk

of ε(v) with the column vectors sk, we have

σ2 = µ
∑

k

λksksTk .

Thus, it is natural to introduce the directionally split tensor artificial viscosity
stresses

σ3 = µkλksksTk and σ4 =
∑

k

µkλksksTk .

The index k in σ3 is typically chosen to correspond to maximal compression (smallest
negative eigenvalue) or to the spectral radius (eigenvalue with maximal modulus).
Note that the shock entropy term is non-negative in all cases: σ1 : ∇~v = µ∇~v : ∇~v,
while by symmetry

σ2 : ∇~v = µε(~v) : ε(~v) , σ3 : ∇~v = σ3 : ε(~v) = µkλ
2
k , σ4 : ∇~v = σ4 : ε(~v) =

∑
k

µkλ
2
k .

Note also that unlike σ1, the symmetric stresses σ2, σ3 and σ4 do not result in a
block-diagonal stiffness matrix, since ∇(φ; 0) : ∇(0;ψ) 6= 0, but ε(φ; 0) : ε(0;ψ) 6= 0.
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More generally, we can use arbitrary set of given orthonormal directions {sk}, not
necessarily related to ε(~v), and define

σ3 = µk(sTk ε(~v)sk)sksTk and σ4 =
∑

k

µk(sTk ε(~v)sk)sksTk .

Since sTk ε(~v)sk =
∑

i,j(sk)iε(~v)ij(sk)j = sksTk : ε(~v), we still have

σ3 : ∇~v = µk(sTk ε(~v)sk)2 ≥ 0 , σ4 : ∇~v =
∑

k

µk(sTk ε(~v)sk)2 ≥ 0 .

Set

M2 = µI = µ
∑

k

sksTk , M3 = µksksTk , M4 =
∑

k

µksksTk ,

Then it is straightforward to check that

σ2 = M2ε(~v) , σ3 = M3ε(~v) , σ4 = M4ε(~v) .

Note that the non-scalar options σ3 and σ4 require the use of the symmetrized velocity
gradient in the tensor viscosity stress.

7. Time Integration and the Fully-Discrete Approximation. So far we
have focused exclusively on the spatial discretization, but in practice one needs to also
discretize the time derivatives in the nonlinear system of ODEs (3.16)–(3.18) obtained
after the spatial discretization of the Euler equations. In this section we consider a
general high-order temporal discretization method, and demonstrate its impact on
the semi-discrete conservations laws. Specifically, let t ∈ {tn}Nt

n=0, and associate with
each moment in time, tn, the computational domain Ωn ≡ Ω(tn). We identify the
quantities of interest defined on Ωn with a superscript n.

Let Y = (v; e;x) be the hydrodynamic state vector. Then the semi-discrete
conservation equations of (3.16)-(3.18) can be written in the form:

dY
dt

= F(Y, t),

where

F(Y, t) =

Fv(v, e,x)
Fe(v, e,x)
Fx(v, e,x)

 =

−M−1
V F · 1

M−1
E FT · v

v


Standard high-order time integration techniques (e.g. explicit Runge-Kutta methods)
can be applied to this system of nonlinear ODEs. However, these standard methods
may need modifications to ensure numerical stability of the scheme and to ensure
exact energy conservation. An example of this is given in the next section. Note that
in general, a time integration method of order N will require N evaluations of the
function F(Y, t).

7.1. The RK2-Average Scheme. The midpoint Runge-Kutta second order
scheme reads

Y n+ 1
2 = Y n +

∆t
2

F(Y n, tn)

Y n+1 = Y n + ∆tF(Y n+ 1
2 , tn+ 1

2 ).
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In practice, we have observed that the above scheme may be unstable even for simple
test problems. Therefore, we developed a modification of the scheme to improve its
stability and to ensure total energy conservation. First, for the half time step values
we compute

vn+ 1
2 = vn − (∆t/2)M−1

V Fn · 1

en+ 1
2 = en + (∆t/2)M−1

E (Fn)T · vn+ 1
2

xn+ 1
2 = xn + (∆t/2)vn+ 1

2 .

Then, for the full time step values we compute

vn+1 = vn −∆tM−1
V Fn+ 1

2 · 1

en+1 = en + ∆tM−1
E (Fn+ 1

2 )T · v̄n+ 1
2

xn+1 = xn + ∆t v̄n+ 1
2 .

Here Fn = F(Y n) and v̄n+ 1
2 = (vn + vn+1)/2.

Proposition 7.1. The RK2-Average scheme described above conserves the dis-
crete total energy exactly.

Proof. The change in kinetic (KE) and internal (IE) energy can be expressed as

KEn+1 −KEn = (vn+1 − vn) ·MV · v̄n+ 1
2 = −∆t (Fn+ 1

2 · 1) · v̄n+ 1
2

IEn+1 − IEn = 1 ·ME · (en+1 − en) = ∆t1 · (Fn+ 1
2 )T · v̄n+ 1

2 ) .

Therefore the discrete total energy is preserved: KEn+1 + IEn+1 = KEn + IEn.

7.2. Automatic time-step control. To facilitate automatic time-step control,
we define a time-step estimate τn as the minimum (over all quadrature points used
in the evaluation of the local force matrices Fz) of the expression:

τn = min
x

α

(
cs(x)
hmin(x)

+ αµ
µs(x)

ρ(x)h2
min(x)

)−1

,

where hmin(x) is the minimal singular value of Jz(x̂) (divided by the kinematic space
degree for high-order methods) and α, αµ are given “CFL” constants, which typically
we define as α = 0.5 and αµ = 2.5. In multistage time-stepping methods, τn is taken
to be the minimum over all stages. With this definition of τn, we use the following
algorithm to control the time-step:

1. Given a time-step ∆t and state Y n, evaluate the state Y n+1 and the corre-
sponding time-step estimate τn.

2. If ∆t ≥ τn, set ∆t = β1∆t and go to step 1.
3. If ∆t ≤ γτn, set ∆t = β2∆t.
4. Set n = n+ 1 and continue with the next time-step.

Here, β1, β2, and γ denote given constants. The default values we use are β1 = 0.85,
β2 = 1.02, and γ = 0.8.

8. Numerical Results. We now present a series of numerical results using a set
of high-order methods corresponding to specific choices for the finite element spaces
describing the Lagrangian mesh coordinates x, the velocity v and the thermodynamic
variable e. We consider several different test problems in both one, two and three space
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dimensions, each designed to exercise and verify a particular aspect of Lagrangian
hydrodynamics and of our high-order discretization methods. We begin by considering
a set of ”smooth” problems (i.e. problems without shock waves) to demonstrate some
particular advantages of high-order curvilinear methods in this context. Next, we
consider more complex shock wave test problems and demonstrate the advantages that
high order methods can have in this context as well. For all test cases considered, we
solve the global linear system for momentum conservation using a diagonally scaled
conjugate gradient algorithm to a residual tolerance of 10−8 and unless otherwise
specified, we use an ideal gas equation of state with a constant adiabatic index γ = 5/3.
For the shock wave test problems, we use the same set of artificial viscosity coefficients,
namely q1 = 1/2 and q2 = 2.

The results in this section have been computed in our high-order finite element
Lagrangian hydrocode BLAST [39], which is based on the parallel modular finite
element methods library MFEM [40]. We also used the related OpenGL visualization
tool GLVis [41] to plot the computed curvilinear meshes and high-order fields.

8.1. Taylor-Green 2D Vortex. The purpose of this example is to verify the
ability of our fully discrete methods to obtain high-order convergence in time and space
on a moving mesh with non-trivial deformation for the case of a smooth (shock-free)
problem. Here we consider a simple, steady state solution to the 2D incompressible,
inviscid Navier Stokes equations, given by the the following velocity and pressure
fields

v = {sin(πx) cos(πy),− cos(πx) sin(πy}

p =
ρ0

4
(cos(2πx) + cos(2πy))

We can extend this incompressible solution to the compressible case with an ideal gas
equation of state and constant adiabatic index γ, by using a method of manufactured
solution, meaning that we assume these initial conditions are steady state solutions
to the Euler equations, then we solve for the resulting source terms and use these
to drive the time dependent simulation. Applying this procedure, we arrive at an
internal energy source term of the form

e =
(cos(2πx) + cos(2πy))/4 + 1

(γ − 1)ρ0

This procedure allows us to run the time dependent problem to some point in time
then perform normed error analysis on the final computational mesh using the exact
solutions for v and p. The computational domain is a unit box with wall boundary
conditions on all surfaces (v · n̂ = 0). Since the initial conditions are also steady state
solutions to the compressible equations (using the energy source mentioned above),
these fields should remain constant for all time as the mesh moves in a Lagrangian
manner. We run the problem to t = 0.75. Since this problem is smooth we run
without any artificial viscosity, and do normed error analysis on the solution at the
final time and compute convergence rates using a variety of high-order methods.

In Figure 8.1 we show plots of the (curvilinear) mesh and velocity field magnitude
at times t = 0 and t = 0.75 using three different mesh / method combinations. The
first case we consider is a Q2-Q1 method on an initially structured quadrilateral
mesh using the energy conserving 2nd order RK2-Average time integration method
(RK2Avg) presented in Section 7, the second case is a P3-P2 method on a triangular
mesh (obtained by subdividing each zone of the previous quadrilateral mesh along
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its diagonal) using a 3rd order strong stability preserving time integration method
(RK3SSP) [42] while the final case is a Q4-Q3 method on an initially unstructured
quadrilateral mesh using a 4th order time integration method (RK4). Note the degree
to which each mesh is distorted as well as the curvilinear element boundaries in each
case. In Figure 8.2 we plot error convergence (using the L2 norm) of the velocity
magnitude at the final time t = 0.75 for each case considered, on a sequence of four
successively refined meshes. Note that for each case we observe the expected (high-
order) convergence rates of 2nd, 3rd and 4th order, even on the highly deformed
curvilinear mesh.

8.2. 2D Single Material, Single-Mode Rayleigh-Taylor Instability. The
purpose of this example is to demonstrate the ability of high-order curvilinear methods
to better resolve complex flow features and achieve greater robustness in a moving
Lagrangian mesh when compared to mesh refined low order methods (with the same
number of degrees of freedom). Here we consider a variation of the classic Rayleigh-
Taylor instability problem [?] which consists of a heavy fluid resting on top of a light
fluid in a gravitational field supported by a counterbalancing pressure gradient. The
problem domain considered is (x, y) ∈ [0, L/2] × [−L,L] with symmetry planes at
x = 0 and x = L/2, where L = 1. Initially, we have

dp

dy
= ρg

with p(y = L) = 2 and the ”gravitational” constant g = −1. For this problem, a
purely Lagrangian method precludes the use of a two material state separated by
a contact discontinuity since the flow will form a ”slide” surface with discontinuous
velocities at the interface. We therefore consider the case of a single material with an
initial smooth density gradient in the vertical (or y) direction given by

ρ(y) =
(ρ1 + ρ2)

2
+

(ρ2 − ρ1)
arctan(βy)

where ρ1 = 1 which represents the ”light” material, ρ2 = 2 which represents the
”heavy” material and the smoothing parameter β = 20. To set up the hydrodynamic
instability across the initial density gradient, we apply an initial velocity perturbation
of wavelength L to the whole problem given by

v = v0{2y exp(−2πy2) sin(2πx), exp(−2πy2) cos(2πx)}

As with the previous problem, this problem is smooth and we therefore run without
any artificial viscosity.

In Figure 8.3 we show plots of the (curvilinear) mesh and density field at different
snapshots in time corresponding to t = 3.0, t = 4.0, t = 4.5 and t = 5.0 for the
case of four different high-order curvilinear methods: Q1-Q0 (analogous to traditional
SGH), Q2-Q1, Q4-Q3 and Q8-Q7. In each case, the total number of kinematic and
thermodynamic degrees of freedom is held constant. This is achieved by de-refining
the mesh one level for every doubling of the spatial order of the method used. Note
that as time increases and the problem develops more vorticity, the low order methods
begin to ”lock-up” and are no longer able to resolve the flow as the mesh begins to
tangle. As the order of the method is increased, the problem is able to run further
in time and resolve more of the flow features while maintaining robustness in the
Lagrangian mesh.
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Q2Q1RK2
−−−−−−−→

P3P2RK3−−−−−−−→

Q4Q3RK4
−−−−−−−→

t = 0.0 t = 0.75

Fig. 8.1. Initial (t = 0.0)and final (t = 0.75) curvilinear mesh and velocity field magnitudes for
the 2D Taylor-Green vortex problem using three different combinations of meshes and high-order
methods.

8.3. Sod Shock Tube. We now transition to shock wave problems which require
the use of artificial viscosity for shock capturing. The purpose of this example is to
verify the ability of our high-order methods to propagate shocks, rarefaction waves
and contact discontinuities in 1D. We consider a simple 1D Riemann problem, the
Sod shock tube, on the domain x ∈ [0, 1] consisting of two materials with different
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Fig. 8.2. Error convergence in velocity magnitude using the L2 norm for the 2D Taylor-Green
vortex problem using three different combinations of meshes and high-order methods.

initial states denoted L (left) and R (right), separated by a contact discontinuity at
x = 0.5. Results on this benchmark using a Q2-Q1 method have been reported in
[36], here we compare the same problem using a Q8-Q7 method with an identical
number of degrees of freedom. The initial conditions are given by

vL = {0, 0}, ρL = 1, eL =
3
2

vR = {0, 0}, ρR =
1
8
, eR =

6
5

Since the problem is 1D, it eliminates multi-dimensional discretization issues and
focuses on the shock capturing properties of our high-order methods such as diffusion
and Gibb’s like ringing at shock fronts as well as possible (non-physical) shock entropy
production in rarefaction waves.

In Figure 8.4 we show scatter plots of the velocity, density, internal energy and
pressure vs. the x-coordinate at the final time of t = 0.2 and compare to the analytic
solution using both a Q8-Q7 method on a ”1D” 50 zone mesh (consisting of 50 zones
in the x direction and a single zone in the y direction with y ∈ [0, 0.1]) and a Q2-Q1
method on a twice refined version of the same mesh (i.e. each zone is subdivided
twice in each dimension, resulting in 200 zones in the x direction and 4 zones in the
y direction, again with y ∈ [0, 0.1]). For each plot, the fields are sampled using the
underlying high order finite element basis function representation with 25 plot points
per zone (5 in the x-direction) for the Q2-Q1 method and 400 plot points per zone
(20 in the x-direction) for the Q8-Q7. The sampling of the solutions at the sub-zone
level is essential to resolve the high-order data that is present in the solution. In both
cases we capture the material contact discontinuity without any diffusion (since we
are using a discontinuous internal energy basis), and in both cases we observe the
”wall heating” phenomenon in the internal energy and its subsequent effect on the
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t = 3.0 t = 4.0 t = 4.5 t = 5.0

Q1-Q0:

Q2-Q1:

Q4-Q3:

Q8-Q7:

Fig. 8.3. Snapshots in time corresponding to t = 3.0, t = 4.0, t = 4.5 and t = 5.0 for the single
material, single-mode Rayleigh-Taylor instability problem using a sequence of high-order methods
with a fixed number of degrees of freedom for each case.

density at the contact. Furthermore, we can conclude for both cases that the ability to
resolve the rarefaction wave is evidence that our artificial viscosity is not excessively
damping the solution in smooth regions. Note that the low order method on the fine
mesh yields essentially the same result as the high-order method on the coarse mesh.

In Figure 8.5 we show plots of the velocity and density zoomed in around the shock
front. In addition, we designate with color-coded vertical lines the zone boundary
around the shock for the Q8-Q7 method and the corresponding four refined zones for
the Q2-Q1. Here we can more clearly see the high-order, sub-zonal variation in both
the continuous velocity and piecewise discontinuous density. For the Q8-Q7, the shock
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Fig. 8.4. Results for the Sod shock tube on a 200 zone mesh using a Q2-Q1 method and a 50
zone mesh using a Q8-Q7 method: velocity ( top-left), density ( top-right), internal energy (bottom-
left) and pressure (bottom-right),

is entirely resolved in a single zone. Note that even though we using an 8th order
polynomial basis for the velocity and a 7th order polynomial basis for the internal
energy for Q8-Q7 method, we do not observe spurious oscillations at the shock front.

Fig. 8.5. Results for the Sod shock tube on a 200 zone mesh using a Q2-Q1 method and a
50 zone mesh using a Q8-Q7 method: zoomed in around the shock front illustrating the high-order
continuous velocity ( left) and discontinuous density ( right). The zone boundaries around the shock
are designated with color-coded vertical lines.

8.4. Sedov Explosion and Noh Implosion on Distorted Grids. The pur-
pose of these examples is to demonstrate the benefits of our high-order artificial vis-
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cosity formulation in maintaining symmetry for shock wave propagation over irregular
meshes. Here we consider both the Sedov explosion [43] and the Noh implosion [44]
test problems in planar x-y geometry. The Sedov problem consists of an ideal gas
(γ = 1.4) with a delta function source of internal energy deposited at the origin such
that the total integrated energy Etot = 1. The sudden release of the energy creates an
expanding shock wave, converting the initial internal energy into kinetic energy. The
delta function energy source is approximated by setting the internal energy e to zero
in all degrees of freedom except at the origin where the value is chosen so that the
total internal energy is 1. The Noh problem consists of an ideal gas with γ = 5/3, ini-
tial density ρ0 = 1 and initial energy e0 = 0. The value of each Q2 velocity degree of
freedom is initialized to a radial vector pointing toward the origin, v = −~r/‖~r‖. The
initial velocity generates a stagnation shock wave that propagates radially outward
and produces a peak post-shock density of ρ = 16.

Fig. 8.6. Density field and curvilinear mesh for the Sedov problem (left) and the Noh problem
(right) on a Cartesian grid with different mesh spacing in different quadrants.

Fig. 8.7. Scatter plots of density vs. radius, colored by quadrant, for the Sedov problem (left)
and the Noh problem (right) on a Cartesian grid with different mesh spacing in different quadrants.

8.5. 2D Multi-Material Shock Triple Point Interaction. The purpose of
this example is to demonstrate that the results from Section 8.2 carry over to multi-
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material shock driven problems as well. Here we consider a three state, two material,
2D Riemann problem which generates vorticity. The problem domain and initial
conditions are depicted in Figure 8.8. This problem tests the ability of our methods to
propagate shock waves over multi-material regions and handle complex mesh motion
due to vorticity. For a Lagrangian method, there is a limit to how long this problem
can be run due to the generation of vorticity. Here we demonstrate the superior
advantage that high-order curvilinear methods can provide in this context.

Fig. 8.8. Initial conditions for the 2D multi-material shock triple point interaction problem.

In Figure 8.9 we show plots of the (curvilinear) mesh and density field (log scale)
at different snapshots in time corresponding to t = 3.0 and t = 5.0 for the case of
three different high-order curvilinear methods: Q2-Q1, Q4-Q3 and Q8-Q7. In each
case, the total number of kinematic and thermodynamic degrees of freedom is held
constant. This is achieved by de-refining the mesh one level for every doubling of the
spatial order of the method used.

8.6. 3D Multi-Material Spherical Implosion. The purpose of this exam-
ple is to demonstrate the benefits of high-order curvilinear methods with respect to
symmetry preservation in 3D problems. Maintaining spherical symmetry on 3D un-
structured meshes remains a major challenge for most Lagrangian (or ALE) schemes.
Here we consider a simple 1D multi-material implosion problem on an unstructured
3D mesh. The problem consists of a low density material with ρ1 = 0.05 in the radial
range r ∈ [0, 1] surrounded by a shell of high density material ρ2 = 1.0 in the radial
range r ∈ [1.0, 1.2]. Each material is at an initial pressure of p = 0.1 and uses an ideal
gas equation of state with γ = 5/3. This problem was originally proposed by [45] for
cylindrical symmetry. Here we make a simple modification for spherical symmetry,
instead of applying a time dependent pressure source to the outermost radial surface
of the problem, we apply a constant velocity source of v = −5~r/‖~r‖.

The outer surface drives a spherical shock wave inward. Ideally, the interface
between the high and low density materials should remain perfectly spherical for all
time due to the spherical symmetry of the velocity drive. However, the discretiza-
tion errors of the initial geometry of this surface and subsequent error introduced
by the numerical algorithm will be amplified over time since the interface is subject
to both Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities. In Figure
8.10 we show plots of the mesh and density at three snapshots in time using a Q1-Q0
method. In Figure 8.11 we show the same plots using a high order Q2-Q1 method on
a curvilinear mesh that is de-refined one level so that the two cases have an identical
number of kinematic and thermodynamics degrees of freedom. In Figure 8.12 we plot
the average radius of the entire material interface (surface) sampled at 9 points per
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Fig. 8.9. Results for density (log scale) and curvilinear mesh in the shock triple point problem
at time t = 3.0 using a sequence of high order methods with a fixed number of degrees of freedom for
each case.

face for the Q1-Q0 method and 25 points per face for Q2-Q1 and compare this to
reference 1D result (obtained from a high resolution 1D Lagrangian SGH calculation).
Note that both methods achieve essentially the same results in the average radius.
In Figure 8.12 we also plot the normalized standard deviation of this radial surface
which indicates the symmetry error over time.Note that Q2-Q1 method is much better
at preserving both the initial and time evolved symmetry of the interface for a fixed
number of degrees of freedom. This is demonstrated further in Figure 8.13 were we
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Fig. 8.10. Snapshots of mesh and density (log scale) at times t = 0, t = 0.081 and t = 0.18 for
the 3D multi-material spherical implosion problem using a Q1-Q0 method.

Fig. 8.11. Snapshots of mesh and density (log scale) at times t = 0, t = 0.081 and t = 0.18 for
the 3D multi-material spherical implosion problem using a Q2-Q1 method.

plot of the calculate radius at the final time of t = 0.18 for both cases.
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Fig. 8.12. Average interface radius vs. time and percent symmetry error vs. time.

9. Conclusions. We have developed and presented a general high order curvilin-
ear finite element approach for solving the equations of compressible hydrodynamics in
a Lagrangian frame. This approach is general with respect to the choice of kinematic
and thermodynamic basis and we shown that under simplifying low order assump-
tions, we can exactly recover classical methods. We have demonstrated via numerical
examples the benefits that can be obtained by using high order curvilinear methods
including the ability to more accurately capture geometrical features of a flow region
and maintain robustness with respect to mesh motion using curvilinear zones, sig-
nificant improvements in symmetry preservation for symmetric flows, elimination of
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Fig. 8.13. Plots of interface radius using a fixed color scale for the 3D multi-material spherical
implosion problem at time t = 0.18 using both a Q1-Q0 method (left) and a Q2-Q1 method (right).

the need for ad-hoc hourglass filters, sharper resolution of a shock front for a given
mesh resolution including the ability to represent a shock within a single zone and a
substantial reduction in mesh imprinting for shock wave propagation not aligned with
the computational mesh.
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